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On the question of determinism

• “ … the randomness of quantum mechanics is 
like a coin toss*. It looks random, but it’s not 
really random.” 

Carsten van de Bruck
– from  Musser , G. (2004) ‘Was Einstein Right?’ 

Scientific American September issue, pp. 88-91 

– * All coins tossed from a skyscraper with different initial velocities 
will reach the same terminal velocity due to friction loss (i.e.
information loss)
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Introduction

Animation taken from http://www.glenbrook.k12.il.us/gbssci/phys/mmedia/energy/pe.html
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Theoretical Model
Displacement:

Velocity/Momentum:

0<Re<2x105 (uncertainity in Cd ±10%
V is velocity, θ is angle in radians, L is the length of the rod.
Assumption: Rigid, thin rod so that tangential force exerted on the body by
the rod is negligible.
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Physical Reality

time t=0, V0=0.0, θ0=45°

S
L

θ =

L
θ

S
mg

L = 0.2484 m
g = 9.8066 m/s2

ρ = 1000 kg/m3 (bob density)
D = 0.5 m (bob diameter)
Fluid properties etc.
ρf=1000 kg/m3

µf=1.5×10-3

Measured value
(θE+δE) = 20 ± 2 degrees

at 5 ± 0.010 seconds
(hypothetical!)

Question:
θ = ?  after 5 seconds
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Approximate Solution to
Pendulum Problem with CD=0
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How accurate are these results?
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Experimental Uncertainty
• Uncertainty in input parameters (measured!)

– Rod length: LE ±δL

– Bob diameter: dE±δd

– Bob density: ρ±δρ

• Similarly for the surrounding fluid properties:
– Air speed: Va±δVa

– Air density: ρ±δρ

– Air viscosity: µ±δµa

– Drag coefficient: CD±δCd

• Experimental Result
– θ=θE±δθ at t=tE±δt

• Benchmark Solution: non-linear problem + drag
– ∆t=1.9531 µs, ea=0.002%
– θ=20.7379 deg
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Computational Issues
• Numerical Errors / Uncertainty (δnum)

– Uncertainty in input parameters
– Round off / chop off error

• Smearing / subtractive cancellation
– Iterative convergence (incomplete iteration)
– Truncation / grid error (incomplete grid convergence)
– Others, i.e. finite domain

• Modeling Errors / Uncertainty (δmod)
– Approximations and/or assumptions in development of the theoretical 

mathematical model
– Example: Pendulum problem

• Rod is infinitely thin (zero mass)
• Drag force negligible
• Small angle (linearization)

• Computational / Prediction Uncertainty (δcomp )
– δcomp = func (δnum, δmod)
– δ2

comp= δ2
num + δ2

mod (May not be decomposable!)
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Verification & Validation (V2&V)
• Phase I – Code Verification

– Computer code: Must be debugged and verified for a wide range of
problems

• Phase II – Calculation Verification
– Show that equations are being solved right

• Phase III – Model Validation
– Show that the theoretical model produces acceptable results when

implemented appropriately

Difficulties:
– Experimental results are not always available (e.g. nuclear explosions)
– Experimental uncertainty may not be available
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Challenge
Predict the ‘truth’ within an acceptable confidence interval 
without knowing the ‘truth’

T = ‘truth’ ± fuzziness about truth

T

δc
δE

C Exp

× ×× “What can not  be 
computed is 
meaningless!”

(Davies, 1992)
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Climbing to the “true solution”

True 
Solution

Numerical 
Predictions

Experimental
Predictions

Numerical technique
Computer Code

Experimental technique
(Experimental Setup)

Parallelism between Experiments and Numerical Methods:

exp exp

2 2
exp

num num

tot num

T T U

T T U

U U U

− <

− <
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Uncertainty v.s. Error

An Error Bar...
...is a U95.
...uses |E1| > 0
...is not an ordered approximation

but an empirical correlation 
…based on computational experiments.

...may be accurate (statistically) even 
outside the asymptotic range.

...could be determined from data for the 
problem ensemble without error 
estimator.

...is what we want for calculation 
Verification prior to Validation.

An Error Estimator...
...is a U50.
...uses signed E1 > 0 or < 0
...is an ordered approximation

…based only on asymptotic theory 

...accuracy depends upon the grid 
sequence being in the asymptotic 
range,

…for any problem.

...is what is commonly given (at best) and 
is what is needed for an 
RE corrected solution. 

After Roache (2003)
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Discretization Error

Global 
uncertainty

Numerical 
error

Modeling errors,
physical errors 

etc

Discretization 
error

Iteration convergence, 
grid quality, domain size 

solver residue, 
round-off error etc.

Common methods of quantifying discretization error:
Richardson extrapolation (RE)
Zhu-Zienkiewicz (ZZ) and energy norm methods
Error transport method (ETE)



14

Literature review of RE

• Richardson (1910, 1927)
• Roache (1993, 1998, 2003)
• Celik et al (1993, 1997)
• Stern et al (2001, 2002)
• Cadafalch et al. (2002)
• Eca & Hockstra (2002)
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Richardson Extrapolation
Λ+++=−= 3

3
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Let h1<h2<h3 and r21=h2/h1, r32 = h3/h2
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Original idea: Richardson (1910, 1927)
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Procedure for estimation of 
discretization error 

 

(i) Define a representative cell, mesh or grid size h.  
Let  
 

∑
=

∆=
N

i
i NVh

1

3/1)/(     

where ∆Vi is the volume of the ith cell, and N is the total number of cells used 
for the computations. 
For three dimensional, structured, geometrically similar grids, one can use 

[ ] 3/1
maxmaxmax ))()(( zyxh ∆∆∆=   

 
(ii) Select three significantly different set of grids and run simulations  

• The grid refinement factor, r=hcoarse/hfine, should be greater than 1.3.  
• The grid refinement should be made systematically, that is, the

refinement itself should be structured even if the grid is unstructured. 
•  Geometrically similar cells are preferable. 
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(iii) Calculate the order “p” according to Richardson Extrapolation 
 
(iv) Calculate the extrapolated values from 

)1/()( 212121
21 −−= pp
ext rr φφφ            )1/()( 323232

32 −−= pp
ext rr φφφ  

 
(v) Calculate the error estimates along with the apparent order p:  
Approximate relative error: 

1

2112

φ
φφ −

=ae  ,  

extrapolated “true” relative error: 

12
1

12
12

ext

ext
ae

φ
φφ −

=  ,  

The fine grid convergence index:  

1
25.1GCI
21

12
12
fine −

= p
a

r
e  ,  

Note: If calculated order, p, is less than 1.0, error estimates should also be given by
assuming p=1 

Procedure for estimation of 
discretization error-Continued
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Example 1: The Pendulum Problem
Simplifications:
1. Drag ~ 0

2. θ is small

0Da ≅sindv g
dt

θ= −

dv g
dt

θ= −

d V
dt
θ

=
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Code Verification: Euler Method
Figure: Verification of Euler Method 
applied to linearized pendulum problem 
(Cd=0). Dashed line: dt = 5.0ms, thick line: 
dt = 2.5 ms, Symbols: exact 

Figure: Error analysis for Euler method 
applied to the linearized pendulum 
problem; hmax = 4 ms66.48721

54.68360.5

1.234149.66570.25

1.058247.25590.125

1.090246.1240.0625

1.001445.55860.0313

1.012845.27840.0156

1.007245.1390.0078

Apparent
Order pphi (deg)

h/hmax
(hmax= 4ms)
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Code Verification: Runge-Kutta
Figure: Verification of RK2 Method applied 
to linearized pendulum problem (Cd=0), 
dashed line: dt = 50ms, thick line: dt = 25 
ms, Symbols: exact 

Figure: Error analysis for Runge-Kutta 
method applied to the linearized 
pendulum problem; hmax = 40 ms 45.39631

45.19860.5

0.26745.03430.25

1.89144.990.125

2.884344.9960.0625

1.099544.99880.0313

1.637444.99970.0156

2.169944.99990.0078

Apparent
Order pphi (deg)

h/hmax
(hmax= 4ms)
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Calculation Verification: Euler method

-19.35821

2.52870.5

1.247711.7460.25

1.908514.20120.125

1.233615.24530.0625

1.122715.72480.0313

1.06315.95430.0156

1.032416.06650.0078

Apparent
Order pphi (deg

h/hmax
(hmax= 4ms)
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Calculation Verification: Runge Kutta

24.91611

18.65850.5

1.777116.83270.25

0.04115.0580.125

1.772915.57730.0625

0.841515.86710.0313

0.927216.01950.0156

0.962616.09770.0078

Apparent
Order pphi (deg)

h/hmax
(hmax= 40ms)
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Example Calculations of 
Discretization Error* 

 φ = dimensionless 
reattachment length 
(with monotonic 
convergence) 

φ = axial velocity at 
x/H=8, y=0.0526 
(p < 1) 

φ = axial velocity at  
x/H=8, y=0.0526 
(with oscillatory 
convergence) 

N1, N2, N3 1.8*104, 8*103, 4.5*103 8*103, 4.5*103, 9.8*102 8*103, 4.5*103, 9.8*102 

r21 1.5 2.0 2.0 

r32 1.333 2.143 2.143 

φ1 6.063 10.7880 6.0042 

φ2 5.972 10.7250 5.9624 

φ3 5.863 10.6050 6.0909 

p 1.53 0.75 1.51 

φext
21 6.1685 10.8801 

(10.8510)* 

6.0269 

ea
12 1.50% 0.58% 

(0.58%)* 

0.70% 

eext
12 1.71% 0.85% 

(0.58%)* 

0.38% 

GCIfine
12 

(error 
bars) 

± 2.18% ± 1.07% 

(± 0.73%)* 

± 0.48% 

     * calculated with p=1 (worst case);          Data from Celik and Kanatekin(1997)
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Extrapolated Cp on step side wall Extrapolated k-profiles 
at x/H = 2.67

Example Calculations of 
Discretization Error -- Continued 

(source: Celik and Karatekin, 1997)
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Variation of reattachment length
with grid refinement factor

Variation of various uncertainty 
estimates with grid refinement factor:
Computed reattachment length

Grid refinement factor

Example Calculations of Discretization 
Error -- Continued 

(source: Celik and Karatekin, 1997) 
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Calculation Verification in Practice
Problem description
• 2D turbulent backward facing step flow 
ReH=50,000

• Expansion ratio 8/9

0 1 2 3

0

0.5

1

1.5

Calculation issues (Fluent 6.0)
•Grid: similar structured grid, non-cartesian

•Turbulence model: Spalart-Allmaras

•Numerical scheme: first/second order upwinding for convection

•Interpolation for post process: Bilinear

•Extrapolation to limit: Power law, Cubic spline, Polynomial, 
Approximate Spline (Celik, et al., 2004)

1.201.111.131.141.171.201.00Grid refinement ratio 

241*241201*201181*181161*161141*141121*121101*101Grid
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6.036.046.056.036.06Polynomial

5.80

5.07

8.77
(1.22)

101-141-201

5.885.885.845.78Cubic spline method

5.225.225.215.00Approximation Error 
Spline

6.54 
(0.53)

7.13 
(0.38)

8.13 
(0.26)

11.46
(0.67)

Power law 
(p)

141-181-241101-181-241101-141-241101-141-181Grid - triplets

5.695.785.876.046.01Polynomial

6.19

6.50

7.86
(-0.28)

101-141-201

5.995.996.076.20Cubic spline method

6.406.406.416.54Approximation Error 
Spline

7.05 
(-0.81)

7.15 
(-0.69)

7.24 
(-0.59)

7.38
(-0.48)

Power law 
(p)

141-181-241101-181-241101-141-241101-141-181Grid - triplets

Extrapolated reattachment length

Second order

first order

mean = 6.36 σ = 1.50

mean = 6.44 σ = 0.58
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Relative error in velocity profile at x/H=3.0

141-181-241, second order
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(1) Does oscillatory convergence occur? 

(2) What happens in the asymptotic range? Asymptotic 
range means the leading error term dominates in the Taylor 
expansion of the error function. 

(3) Is Richardson extrapolation applicable to oscillatory 
converging cases? 

(4) How can one best make use of results from an 
oscillatory converging computation? 

Introduction to Oscillatory 
Convergence



31Error plots in both expanded and zoomed form 

Examples of Oscillatory Convergence 
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Examples of Oscillatory Convergence 

λφφφ +Γ= xxxu )()(

h

ph
i

0 0.05 0.10.48

0.49

0.5

0.51

0.52

0.53

0.54

Gamma=0.1
Gamma = 0.05

Convection--First order
Diffusion--2nd order

)4cos( xu π=

X=0.5

(0) 0ψ =

(1) 1ψ =

turbulent kinetic energy (m 2/s2)

he
ig

ht
(m

)

0.005-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5 coarse

medium
fine

Turbulent kinetic energy along a 
vertical line 20cm downstream 
of a human manikin in a wind 
tunnel (using Fluent and 
Standard k-ε turbulence model, 
Li et al., 2003)
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u (m/s)

he
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ht
(m

)

0

0.5

1

1.5

2

2.5

d=1cm d=10cm d=20cm d=30cm

0 0.4 0 0.4 0 0.4 0 0.4

Oscilatory Grid Convergence

u (m/s)

he
ig

ht
(m

)

0.6

0.65

0.7

30,621
124,326
347,595
1,041,318

Case :  Human Exposure (Li et at., 2003)
H= 0.65m

# grid node u (m/s) (Interpolated) ∆ufc
30,621 0.218 0.023
127,326 0.241 -0.035
347,595 0.206 -0.016

1,041,318 0.190



34

Construction of Oscillatory Convergence 
λφφφ −= xxxu

0~~~
11 =−+− +− iiiiii cba φφφ

0(0) =φ 1(1) =φ

. 

λ++= iii cab

h
uca i

ii +=

fgE iiii =−≡ φφ~

))(1( inxigi −−= β

)cos(khhf p=

0)()()( 1111 =+−+++− ++−− fgcfgbfga iiiiiiiii φφφ

with

Assume

(1)

(2)

(3)

ai, bi and ci can be solved by combining (1-3) 
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Modeled Equations for 
Oscillatory Convergence

phkhah )2cos()( 0 πφφ +=

pbh hkheah )2cos()1()( 0 πφφ −−+=
phkhhah )2cos()1log()( 0 πφφ ++=

0φ

1.0
1b

1, 2, 3p

0.5, 1(for oscillatory); 
0.01, 0.02 (for monotonic)

k
0.2, 0.4, 0.6a
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Assessment of above methods

1. Confidence level for the extrapolated value to be 
in the interval of Phi_exa±20% error. 

2. The L2 norm of the true error defined by 

2/1
2

0
2 ))0(( 








−= ∑

cases
L φφ.
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Assessment of above methods
--- continued 1
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Assessment of above methods 
--- continued 2
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2.201.273531.43norm

89%96%9%96%probability in [0.8, 
1.2)Monotoni

c

1.480.8511237.2norm

95%99%0%54%probability in [0.8, 
1.2)Oscillator

y
4 

points

1.692.013.552.62norm

93%90%90%87%probability in [0.8, 
1.2)Monotoni

c

1.388.1025.215.3norm

96%55%77%41%probability in [0.8, 
1.2)Oscillator

y
3 

points

Approximate 
error spline

Cubic 
spline

PowerlawPolynomial

Assessment of above methods 
--- continued 3
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Conclusions 
The oscillatory convergence behavior can occur in 

the asymptotic region

By way of manufactured solution to FD equations 
and constructing a corresponding finite difference 
scheme, it is shown that there exist infinitely many 
finite difference methods that will exhibit oscillatory 
convergence even in the asymptotic range.

Using the data obtained from the model error 
equations, the newly proposed approximate error 
spline (AES) method performs superior to the others, 
the commonly used power-law method ranking the 
second best.
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Proposed Error Transport Equation 
Method (ETE)

• Richardson extrapolation (RE)
– Popular, relatively reliable (+)
– At least three sets of grid, expensive (-)
– Difficult to identify asymptotic range (-)
– Does not work for oscillatory grid convergence (-)

• Error transport method (ETE)
– No extra effort in grid generation (+)
– Can be solved using the same scheme (+)
– Can be used as a post-processing tool for steady problems(+)
– Additional recourses for code development (-)
– Difficulty in determining source term of ETE (-)
– Reliability still under investigation (-)
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Literature review of ETE

• Roache (1993 & 1998)
• Van Straalen et al. (1995)
• Zhang et al. (1997)
• Wilson & Stern (2001) 
• Celik & Hu (2002, 2003)
• Qin & Shih (2003)
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Error Transport Equation (ETE)

φφε ~-=error is defined as:

ETE:

L  : differential operator (PDE)
Lh : difference operator (FDE)
φ : exact solution to PDE
φ~ : numerical solution
R  : residual

(1) 

(2))()(
0)~(

0)(

φτφ
φ

φ

==
=

=

RL
L

L

h

h

)()~()()( φτφφε =−≡ hhh LLL

τ represents the truncation error of a discretized equation, 
i.e. the error source term

Non-linear:

Linearized:
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Error Transport Equation Applied to
Linearized Pendulum Problem

ETE solves the following two additional  equations for
errors in the velocity E(V) and the angle E(θ), respectively:

2 2
( ) ( ) ( ) ( )

1 22
V V V

n n n n
F F h VE E h E E

V t
θ

θ+
∂ ∂ ∂ = + + + ∂ ∂ ∂ 

2 2
( ) ( ) ( ) ( )

1 22
V

n n n n
G G hE E h E E
V t

θ θ θ θ
θ+

∂ ∂ ∂ = + + + ∂ ∂ ∂ 

-4.90-4.6749.671

-10.81-9.06 44.52-9.8254.822

-26.26-21.03 42.87-21.7766.774

Ea
ETEEa

REθext(deg.)Enum(deg.)θnum(deg.)h = ∆t 
(ms)

Table: Analysis of the pendulum problem: L=0.2484 m, g=9.8066 m/s2, θ(0) = 45o.
After 5 seconds          = 45o,            =16.177o; observed order from RE, p=1.21linear

exactθ .non lin
exactθ −
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Eq. (2) – Eq. (1) ETE:

where

Example: a fully implicit method
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τ can be obtained by Taylor Series expansion about point P



46

Generalized Derivation of Error Source

implicit 
coefficient

matrix

explicit 
coefficient

matrix
φnew φold

Influence circle 
r

Need to know: 
1. Access to the coefficient matrix
2. Influence circle (or radius)
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0)~~(~~)~( ,expexp,, =+−−≡ ∑∑ o
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nbnb

o
PCnbimpnbPimpC aaaa

Example: 2D, five point stencil
( )

( )

( )

( )

∑

∑

∑

∑

∑

∞

=

∞

=

−

∞

=

−

∞

=

−

∞

=

−

∆∆
∆

−−

+−
∆

∆
−

+−
∆

∆
−

+−
∆

∆
−

+−
∆

∆
−=

1

1

1
1

1
1

1
1

1

1

1

1

1

1

n
)n(,t

o
P

n
n

m
)m(,yexp,Nexp,S

m
m

m
)m(,xexp,Eexp,W

m
m

m
)m(,yimp,Nimp,S

m
m
m

)m(,ximp,Eimp,W
m

m

a
yx!n

t)(

aa)(
x!m

y

aa)(
y!m

x

aa)(
x!m

y

aa)(
y!m

x)(

φ

φ

φ

φ

φφτ

Generalized Derivation of Error Source
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1D Convection Diffusion
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1D Convection Diffusion

• 1st order Upwind for 
convection and central 
differencing for 
diffusion

• Derived tau used with 
numerical solution

• Central differencing 
used to evaluate tau-
terms

Predicted error



50

2D Poison Equation

11-,11- :domain
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2D Poison Equation:
Exact error ETE error

Central difference Scheme
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2D Steady Convection Diffusion

( ) 0

domain: 0 1, 0 1
x y xx yyu v

x y

φ φ φ φ+ − Γ + =

≤ ≤ ≤ ≤

0
'( , ) exp K

2 2 2
m Vx rx yφ
π

   =    Γ Γ Γ   

&

Dirichlet B.C. is imposed using the analytical solution

Analytical 
solution
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2D Steady Convection Diffusion

Exact error Calculated error

Line plot along diagonal

1st order Upwind scheme
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Nonlinear Burger’s equation

2

2

y
u

y
uu

t
u

∂
∂

=
∂
∂

+
∂
∂ ν

b.c.: u(0,t)=1, u(L,t)=0, fully implicit, upwind, Pe=10

b.c. u(t,0)=f(t,0), u(t,1)=f(t,1), 
i.c.  u(0,x)=f(0,x), Fully explicit, upwind, t=0.5

Steady case Transient case

Steady case

Transient case

1st order upwind
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Nonlinear Burger’s equation Nonlinear Burger’s equation 
(Cont’d)(Cont’d)

Central difference scheme, exact error vs. calculated error

Re=10 Re=60
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Application on a Application on a 
NN--S SolverS Solver

2D mixing layer 4.0 m

0.4 m

U1=1.0

U2=0.5

Slip boundary condition

Slip boundary condition

x, u
y,v

60x60 12x120
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Application on a N-S solver: 
calculated error
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Y(
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)

U_60x60-U_20x20;x=2.0
U_180x180-U_60x60; x=2.0
U_540x540 - U180x180; x=2.0
U_540x540 - U60x60; x=2.0

Use grid independent solution as “exact” solution
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Application on a NApplication on a N--S solver:S solver:

RE results: predicted error is too small and oscillating
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Conclusion for RE & ETE

• ETE works as good as and sometimes better than the 
RE for simple steady flow problems. Further, for 
steady calculation ETE can be used as a post-processor 
tool to save computational expense 

• For transient problems, the quality of ETE results are 
dependent on the primary field variables; a dissipative 
schemes will lead to large errors in the ETE calculation

• Coefficient-based ETE is a fairly general formulation 
and can be adopted in the computer codes without 
much effort; The same solver can be used to calculate 
the error as that for the primitive variables. 
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“True solution”

Num. predictions

Exp. predictions

Model validation Validation of exp. approach

Verification of calcs., one or more 
cases

Verification of 
Measurements, one or more 
cases

Num. tech.  (Computer 
Code)          Single calc.      
Repeated calcs., 

Measurement tech. (Exp. set up)      
Single realization    Repeated 
exps.

Pollutants:
Grid convergence
Iterative convergence
Grid quality
Domain size
Approx. B.C.
Modeling bias

Pollutants:
Inst. resolution
Calibration errors
Scaling
Domain approximation
Boundary conditions
Measurement bias

Verification of exp. Sys. 
(simple flows)

Code verification (anal./manufactured 
solutions, simple flows)

Modeling (RANS) Simulation Experiments

DNS

LES

22
exp/ numne φφφ +=

95UnumT <−φφ

95exp UT <−φφ

EfsneT <− /φφ

22
exp numEEE +=

num
e
numnumE φφ −=

expexpexp φφ −= eE

Acknowledgement: This cartoon was created after seeing a similar 
cartoon in the book Turbulence by U. Frisch (1997). 
The original cartoon was drawn by the astronomer 
Philippe Delache (1977). The above cartoon is not a reproduction. 
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